

Avant propos

La publication de l'arrêté royal «médicaments» du 21 juillet 2016 et la signature de la «Convention Antibiotiques» par tous les partenaires concernés par la réduction de l'usage d'antibiotiques vétérinaires ont marqué un tournant important dans la lutte contre l'antibiorésistance, en Belgique.

Convaincue que l'utilisation massive d'antibiotiques favorise la sélection de bactéries de plus en plus résistantes et préjudiciables à la santé humaine et animale, l'ARSIA adhère pleinement à cette politique. En 2005 déjà, nous publiions le premier rapport de l'évolution de l'antibiorésistance, en Wallonie.

Notre volonté de soutenir les praticiens dans ce contexte de lutte n'a pas faibli depuis. Nous souhaitons leur donner, ainsi qu'aux éleveurs wallons, les outils efficients et indispensables à la pratique d'une médecine vétérinaire responsable et ceci grâce, faut-il le souligner, à notre personnel hautement formé et informé tant sur les plans techniques que scientifiques.

En supplément, dans la foulée des antibiogrammes quotidiennement réalisés à l'ARSIA et des actions menées dans le cadre de notre programme « ALTIbiotique », ce rapport inclut des fiches synthétiques, état des lieux en quelque sorte des bactéries isolées au service de Pathologie/Bactériologie.

Nous espérons modestement que ce rapport contribuera à une meilleure connaissance de l'évolution des résistances et qu'il apportera aux lecteurs un lot d'informations utiles à la pratique de leur art.

Je tiens à féliciter notre confrère le Dr Marc Saulmont pour la qualité de ce travail et remercie vivement ses équipes technique et vétérinaire ainsi que tous nos collaborateurs ayant participé de près ou de loin à sa rédaction.

Que soient aussi ici grandement remerciés les praticiens qui nous confient leurs prélèvements car ils participent de la sorte au développement du réseau de surveillance, mis en place voici près de 15 ans.

Bonne lecture à tous!

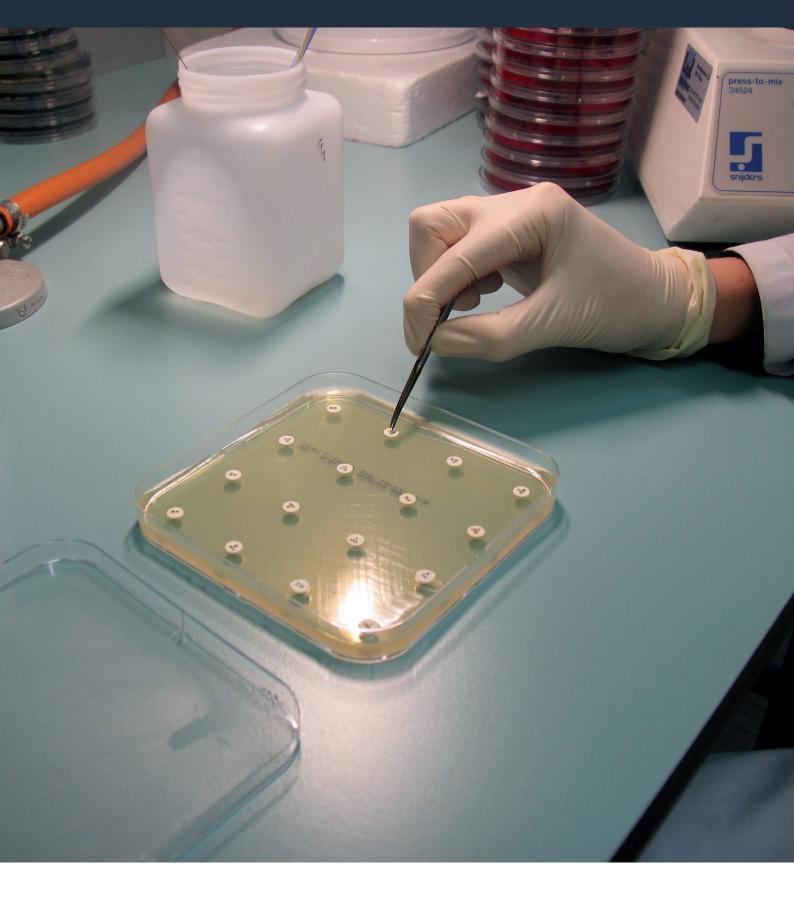
Dr Marc LOMBA, Directeur général

Table des matières

Avant-propos
Introduction
Matériel et méthode 4
Les molécules testées
La norme et le référentiel
Le principe6
La lecture 6
L'interprétation
Les résultats définitifs
Les résultats 7
Les antibiogrammes
Les espèces animales
Les espèces bactériennes 9
Les données de résistance (SIR) 9
Les entérobactéries
 Les Escherichia coli povins Escherichia coli entérohaemolysine
positive bovin
 Escherichia coli entérotoxinogènes (ETEC)
 Les souches invasives
✓ Les autres entérobactéries d'intérêt14
 Salmonella enterica Dublin
 Salmonella enterica Typhimurium
✓ Les bactéries pathogènes respiratoires majeures
 ✓ Deux bactéries pathogènes respiratoires
mineures16
✓ La santé mammaire
 Les entérobactéries
 Les streptocoques
 Les staphylocoques
✓ Biais de sélection dans les bactéries étudiées 22
✓ Les entérobactéries multirésistantes23
• Les BLSE et les AmpC
 La multirésistance chez les E. coli bovins Les MRSA et MRS
Ce qu'il faut retenir25
Conclusion25
Remerciements25
Annexes26
Bibliographie28
Abréviations et acronymes28

Introduction

Le dernier rapport d'activités édité par l'ARSIA sur les données d'antibiorésistance remonte à 2013. Leurs mises à jour s'imposaient donc. Comme vous pourrez le constater, la situation a grandement évolué en matière d'utilisation des antibiotiques.


Ces cinq dernières années, s'est développée une réelle prise de conscience de l'impact désastreux de l'utilisation massive, au niveau mondial, des substances antibactériennes. Il apparaît désormais évident aux yeux de beaucoup que si rien n'est fait pour réguler leur utilisation, nous nous dirigerons droit vers une impasse thérapeutique, d'autant plus que l'innovation en la matière est pratiquement tarie.

Depuis plusieurs années, le monde médical et les autorités se mobilisent tant à l'échelon national qu'international afin d'étudier ces évolutions, sensibiliser le monde médical mais aussi profane, ou encore prendre des mesures contraignantes à l'égard des acteurs de la santé humaine ou animale.

Parmi ces initiatives, nous citerons en Belgique la création de l'asbl AMCRA en 2012 et la publication de ses objectifs en 2014, la signature en 2016 de la convention « antibiotique » entre l'autorité fédérale et tous les partenaires sectoriels concernés par la réduction de l'usage des antibiotiques dans le secteur animal, la publication du nouvel arrêté royal du 21 juillet 2016 relatif aux conditions d'utilisation des médicaments par les médecins

vétérinaires et par les responsables des animaux, la mise en service de SANITEL-MED et enfin le développement de la plateforme BI-GAME par l'ARSIA et ses partenaires.

Voici donc un recueil des données disponibles à l'ARSIA pour la période allant de janvier 2013 à juin 2017 y compris. Cette scission en milieu d'année 2017 peut paraître étrange eu égard aux habitudes de rapportage couvrant généralement des années civiles complètes. Il nous a toutefois semblé utile d'intégrer le premier semestre 2017 dans ce document afin de visualiser les premiers effets de la nouvelle politique belge en matière d'utilisation raisonnée des antibiotiques.

Matériel & méthode

Nous utilisons la méthode de diffusion en milieu gélosé à partir de disques imprégnés d'antibiotiques (méthode de Kirby-Bauer). Cette technique est adaptée à la détermination de la résistance d'une souche bactérienne à plusieurs antibiotiques simultanément.

La reproductibilité des résultats obtenus est assurée par la réalisation quotidienne de contrôles de qualité sur des souches de référence ainsi que par l'organisation, en interne, de contrôles de qualité annuels et la participation régulière à plusieurs essais d'aptitude internationaux.

Enfin depuis 2005, notre laboratoire est accrédité par l'organisme certificateur pour ses prestations sur les entérobactéries et les staphylocoques.

Les molécules testées

L'ARSIA propose 5 profils d'antibiogrammes (tableau 1) selon les espèces bactériennes considérées et les grands systèmes. Désormais, le design des antibiogrammes doit rencontrer les exigences de l'arrêté royal «médicament». Un antibiogramme doit comporter les molécules critiques et minimum 7 autres antibiotiques appartenant à minimum 5 familles non critiques.

Antibiotique « critique » : antibiotique d'intérêt majeur en médecine humaine, notamment comme traitement de

Tableau 1 : Profils d'antibiogrammes proposés à l'ARSIA		Antibiogrammes						
Code ABG	Antibiotiques	GRAM négatif	GRAM négatif mammite	Système respiratoire	GRAM Positif	GRAM Positi mammite		
SXT	Triméthoprime + sulfaméthoxazole	Х	Х	Х	Х	Х		
AMX	Amoxicilline	Х	Х	Х				
AMC	Amoxicilline + acide clavulanique	Х	Х	Х	Х	X		
G	Gentamicine	Х	Х	Х	Х	Х		
COL	Colistine	Х	Х	Х				
XNL	Ceftiofur	Х	Х	Х	Х	Х		
CFQ	Cefquinome	Х	Х	Х	Х	Х		
ENR	Enrofloxacine	Х	Х	Х	Х	Х		
MAR	Marbofloxacine	Х	Х	Х	Х	Х		
СТХ	Céfotaxime	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾				
СТС	Céfotaxime + acide clavulanique	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾				
CAZ	Ceftazidime	X (2)	X (2)					
CZC	Ceftazidime + acide clavulanique	X (2)	X (2)					
FOX	Céfoxitine	X (1)	X (1)	X (1)				
FF	Florfénicol	Х	Х	Х	Х	X		
K	Kanamycine	Х	Х	Х				
TE	Tétracycline	Х	Х	Х	Х	X		
MER	Méropénème	X (1)	X (1)	X (1)				
СЕРН	Céfalonium		Х			Х		
PIR2	Pirlymycine					X		
RIFAX	Rifaximine					X		
NPS	Nafcilline + pénicilline + streptomycine		Х			X		
CEF + KAN	Céfalexine+kanamycine		Х			X		
TULA	Tulathromycine			Х				
TILDI	Tildipirosine			Х				
GAMI	Gamithromycine			Х				
PENE + PEN + FRAM	Pénéthamate + pénicilline + framycétine		Х			X		
PEN	Pénicilline				Х	X		
OXM	Oxacilline				Х	Х		
CN	Céfalexine				X	X		
GEN	Gentamicine HC (3)				X	X		
LIN	Lincomycine				Х	X		
ERY	Erythromycine				Х	X		
SPI	Spiramycine				X	X		

⁽¹⁾ Non rendu sur le rapport d'essai, (2) Arrêté en 2014, (3) Disque de gentamicine à haute concentration pour les streptocoques, (4) Dans l'ensemble des antibiogrammes, la sensibilité aux triméthoprime-sulfamides est évaluée à partir des résultats obtenus pour le triméthoprime-sulfaméthoxazole de charge 1,25/23,75µg. L'interprétation est valable pour les autres associations triméthoprime-sulfamides.

La norme et le référentiel

Nous suivons la norme AFNOR UN 47-107 mise à jour en décembre 2012, laquelle détaille précisément le mode opératoire ainsi que les conditions de réalisation des antibiogrammes. Les résultats ainsi obtenus sont interprétés selon le référentiel du Comité de l'Antibiogramme de la Société Française de Microbiologie. Ce document est mis à jour annuellement.

Afin d'être interprétable, la méthode décrite doit être respectée à la lettre. Parmi les points critiques, citons la densité de l'inoculum bactérien, la charge en antibiotique des disques imprégnés et leurs conditions de conservation, les caractéristiques des milieux gélosés utilisés, la température, le temps d'incubation des géloses ainsi que le timing des différentes étapes de réalisation des antibiogrammes.

La lecture

Le temps d'incubation écoulé, la lecture des géloses peut alors être réalisée au moyen du SIRscan™ 2000, lecteur automatique dont la caméra haute définition réalise une quarantaine de mesures du diamètre d'inhibition présent autour de chaque pastille et conclut à un résultat moyen exprimé en millimètres (mm).

L'interprétation

Ces résultats en mm sont confrontés par le logiciel SIRweb™ aux valeurs de référence produites par le Comité de l'Antibiogramme de la Société Française de Microbiologie (CA-SFM) et transformés en résultats bruts, soit S (Sensible), I (Intermédiaire) ou R (Résistant).

Il s'ensuit une deuxième interprétation intégrant les notions d'antagonismes, de synergies et de mutants.

A titre d'exemple, la mise en évidence de phénotypes bêta-lactamase à spectre étendu (BLSE) chez les *E. coli* est établie en comparant les différences de taille des zones d'inhibition autour des pastilles de céfotaxime et de céfotaxime + acide clavulanique ou par la mise en évidence d'une synergie « en bouchon de champagne » entre le disque d'amoxycilline + acide clavulanique et un disque de céphalosporines de 3ème ou 4ème génération. Nous rendons donc à l'utilisateur final un résultat interprété résistant pour toutes les antibiotiques bêta-lactames, quel que soit le résultat brut de l'antibiogramme pour ces molécules.

Note: Dans le référentiel du CA-SFM, en cas de mise en évidence d'une bêta-lactamase à spectre étendu (BLSE), la souche doit être considérée comme résistante à toutes les bêta-lactamines disponibles en médecine vétérinaire, à l'exception de l'association amoxicilline-acide clavulanique. Pour cet antibiotique, le résultat brut (S, I ou R) n'est pas soumis à cette règle d'interprétation. Néanmoins, l'efficacité in vivo de l'amoxicilline-acide clavulanique sur une souche possédant une BLSE n'est pas documentée en médecine vétérinaire.

Le principe

A partir d'une culture pure et fraîche de moins de 24 heures, nous réalisons une suspension bactérienne standardisée titrant environ 10⁷ UFC/ml en liquide physiologique stérile, grâce à la technique Inoclic™ (tigette métallique et micro-alvéolée, calibrée pour loger les bactéries lors du piquage d'une colonie en gélose, Inoclic ND, @I2A).

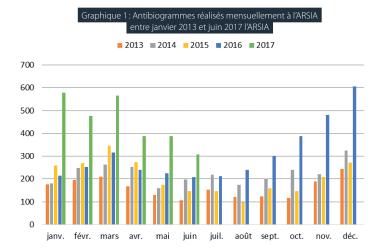
Endéans les 15 minutes, nous ensemençons par écouvillonnage les milieux nécessaires à la réalisation des antibiogrammes. Nous utilisons le Mueller-Hinton Agar (MH) pour les germes faciles tels que les entérobactéries et les staphylocoques et le Mueller-Hinton Agar (MHR) additionné de sang de mouton pour les germes difficiles ou à croissance plus lente tels que les pasteurellaceae et les streptocoques.

Dans un second délai de 15 minutes, les pastilles d'antibiotiques sont déposées sur les géloses ensemencées à l'aide d'un distributeur ou manuellement.

A l'issue de ces 3 étapes, les géloses sont incubées à 37°C +/- 2°C en aérobiose, pendant 18 à 24 heures.

Les résultats définitifs

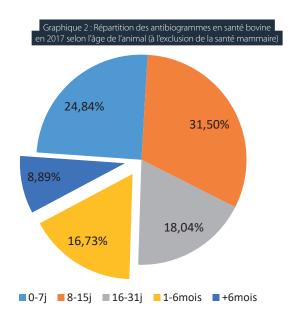
Après validation par un vétérinaire, les résultats interprétés sont injectés dans le système informatique du laboratoire et intégrés aux rapports d'essai.

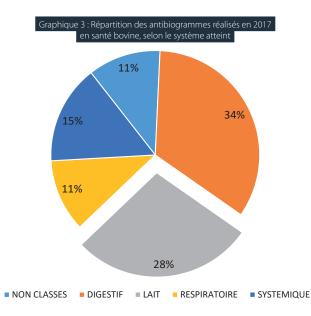

L'ensemble des résultats (en mm) bruts et interprétés ainsi que les photos des antibiogrammes sont stockés dans nos systèmes informatiques ce qui permet une traçabilité complète, mais aussi une exploitation ultérieure des données notamment pour la rédaction des rapports d'activités et les différentes présentations et publications qui le justifient.

Résultats

Les antibiogrammes

L'ARSIA réalisait annuellement jusqu'en 2015 près de 2500 antibiogrammes, la période hivernale étant proportionnellement la plus active. Depuis août 2016, sous l'impulsion de la nouvelle politique «antibiotiques» et l'incitation au recours aux examens de laboratoire avant utilisation d'antiinfectieux, le nombre d'analyses a sensiblement augmenté. En 2016, le nombre d'antibiogrammes a augmenté d'environ 45%. Le premier semestre 2017 suit la même tendance, comme le montre le graphique 1.




Les espèces animales

La majorité de ces analyses sont réalisées pour l'espèce bovine même si au fil de ces six dernières années, 31 espèces ont été répertoriées dans la base de données antibiogrammes (tableau 2).

75% des antibiogrammes réalisés en santé bovine en 2017 concernent des animaux âgés de moins d'1 mois, si toutefois on ne tient pas compte de la santé mammaire. Celle-ci représente 28% des antibiogrammes réalisés sur la même période (graphique 2 et 3).

	2013	2014	2015	2016	06/2017
BOVIN	1598	2450	2270	3395	2494
OVIN	27	60	43	60	85
PORC	10	16	10	24	25
VOLAILLE	26	28	32	37	26
CHEVRE	12	8	9	19	17
CHEVAL	5	9	7	10	8
CHIEN	22	19	17	16	8
LAPIN	17	18	12	12	8
AUTRE	42	9	26	47	4
CHAT	4	11	6	15	3
PIGEON	13	23	18	8	3
CANARI	6	6	1	3	1
OISEAUX	13	11	4	6	1

Les espèces bactériennes

En matière d'antibiothérapie et donc d'antibiorésistance, nous proposons la répartition des pathogènes bovins selon 3 classes :

- les entérobactéries digestives et septicémiques,
- les pasteurellaceae
- les bactéries isolées sur mammites.

Tableau 3 : « Top 20 » des bactéries soumises à l'antibiogramme

	2013	2014	2015	2016	06/2017
Escherichia coli CS31A	195	255	381	717	584
Escherichia coli (autres que CS31A, F17, K5, Enterohaemolysine)	205	279	310	623	528
Escherichia coli F17 (ATT 25)	90	133	137	319	253
Streptococcus uberis	150	191	152	254	218
Staphylococcus aureus	32	70	54	111	74
Salmonella Dublin	55	89	99	102	38
Escherichia coli F5 (K99)	24	26	39	85	78
Streptococcus dysgalactiae	56	53	56	73	77
Escherichia coli Enterohaemolys. +	30	44	31	55	46
Pasteurella multocida	30	31	33	65	48
Klebsiella pneumoniae	9	5	12	49	28
Mannheimia haemolytica	13	72	25	49	39
Salmonella Typhimurium	10	13	7	34	16
Staphylococcus haemolyticus	10	22	11	32	23
Staphylococcus chromogenes		10	11	25	14
Serratia marcescens	3	7	13	18	6
Pseudomonas aeruginosa	5	6	8	14	7
Histophilus somni	7	10	6	13	11
Staphylococcus sciuri	3	6	4	9	11
Staphylococcus xylosus	1	8	7	9	7

Les données de résistances (SIR)

L'évolution de l'antibiorésistance est suivie depuis de très nombreuses

années à l'ARSIA tant pour les molécules critiques que non critiques. Dans ce chapitre, nous illustrons les tendances observées ces 5 dernières années et tentons d'objectiver les évolutions déjà perceptibles et probablement liées à la mise en place de la nouvelle politique d'utilisation des antibiotiques en production bovine.

Pour ce faire, nous comparons les résultats des antibiogrammes réalisés durant la période 2016-2017 aux résultats obtenus sur des populations bactériennes

similaires entre 2013 et 2015. Cette approche est semblable à celle utilisée dans le précédent rapport d'activités publié en 2013. Nous proposons ensuite une illustration de l'évolution sur une base annuelle et sous forme de courbes, lesquelles représentent le mieux les évolutions récentes perceptibles en 2016 et 2017.

		2013	2014	2015	2016	06/2017
euses	Tablea	iu 4 : Bacteries s	eplicemiques c	dunA - nivod ut	logrammes les	pius irequents

	2013	2014	2015	2016	06/2017
Escherichia coli	38	55	78	194	140
Escherichia coli CS31A	6	5	12	60	36
Salmonella Dublin	6	18	21	36	16
Escherichia coli F17 (ATT 25)	5	8	8	24	22
Salmonella Typhimurium	3	1	2	10	2
Listeria monocytogenes	4	2	2	8	15

Dans les différents graphiques, les différences significatives à la baisse sont illustrées par des flèches vertes pointant vers le bas et les différences significatives à la hausse par des flèches rouges pointant vers le haut. Ces évolutions ont été éprouvées statistiquement à l'aide du test de l'écart réduit pour les populations comptant au moins 30 valeurs. Pour les populations plus petites, un Khi carré a été appliqué.

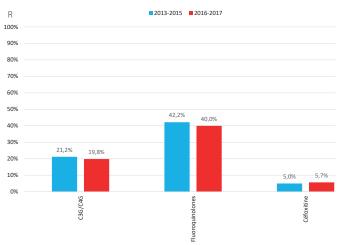
Les entérobactéries

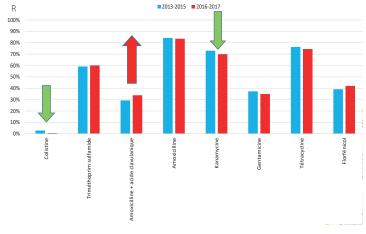
Parmi les entérobactéries, les *Escherichia coli* sont les bactéries les plus fréquemment isolées dans notre laboratoire chez les bovins septicémiques ou diarrhéiques (tableaux 4 et 5). Elles sont également, parmi les bactéries pathogènes, celles qui subissent le plus d'évolutions dans leur antibiorésistance, tant à la hausse qu'à la baisse.

Les informations liées aux *E. coli* isolés en pathologie mammaire sont réunies plus loin dans le chapitre santé mammaire (page 16).

	2013	2014	2015	2016	06/2017
Escherichia coli CS31A	188	246	361	577	480
Escherichia coli F17 (ATT 25)	83	120	123	244	197
Escherichia coli F5 (K99)	24	26	39	85	78
Salmonella Dublin	49	71	78	66	22
Escherichia coli entérohaemolysine +	30	44	31	63	54
Klebsiella pneumoniae	5	4	9	24	13
Salmonella Typhimurium	6	10	5	23	11

Tableau 5 : Bactéries intestinales du bovin - Antibiogrammes les plus fréquents

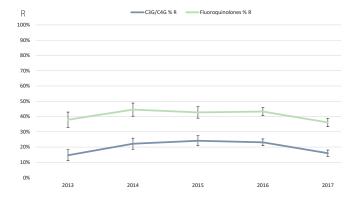

Les Escherichia coli bovins

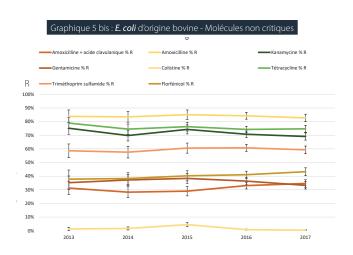

COMPARAISON 2013-2015 VERSUS 2016-2017

Nous constatons des évolutions allant dans le sens d'une diminution de l'antibiorésistance pour les C3G/C4G et pour les fluoroquinolones. Ces différences sont toutefois non significatives. Une diminution significative de l'antibiorésistance est constatée pour la kanamycine et la colistine avec pour cette dernière les réserves évoquées ci-dessous. Une différence significative dans le sens d'une augmentation est la seule à signaler pour l'amoxicilline + acide clavulanique.

Tableau 6 : <i>E. coli</i> bovins de toutes origines (à l'exclusion de la santé mammaire)						
Année	2013	2014	2015	2016	06/2017	
n	383	527	680	1441	1221	

Graphiques 4 et 4 bis : *E. coli* d'origine bovine - Comparaison 2013-2015 versus 2016-06/2017




PÉRIODE 2013-2017

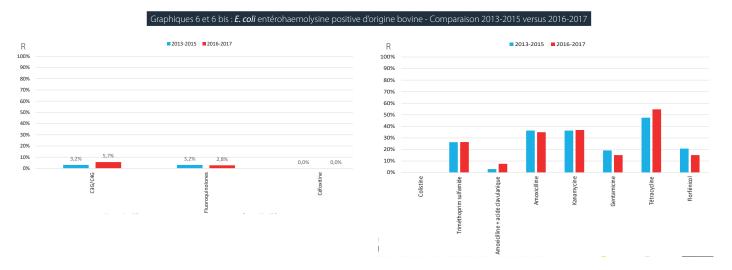
Dans le précédent rapport d'activités antibiogrammes couvrant la période 2010 - 2012, la résistance des *E. coli* bovins vis-à-vis des molécules critiques était globalement à la hausse, voire nettement à la hausse. Pour la période 2013-2017, on a assisté à une stagnation puis à une légère diminution de l'antibiorésistance à partir de 2016, tendance qui semble s'accentuer en 2017.

Graphique 5 : *E. coli* d'origine bovine - Molécules critiques

Pour ce qui est des molécules non critiques, la tendance générale est à la stabilité avec toutefois une inflexion vers le haut des courbes depuis 2016 pour l'amoxicilline + acide clavulanique, la tétracycline et le florfénicol. La résistance à la colistine quant à elle est difficile à évaluer, la méthode de l'antibiogramme en diffusion étant clairement peu adaptée. Toutefois l'actualité la concernant a été particulièrement riche depuis 2015, avec la mise en évidence par une équipe de chercheurs chinois d'un gène de résistance plasmidique appelé «mcr1» ensuite d'un second appelé «mcr2». L'équipe du Professeur Jacques Mainil de la Faculté de Médecine Vétérinaire de l'Université de Liège a exploré une partie des souches d'Escherichia coli isolées à l'ARSIA et potentiellement porteuses de ces gènes (annexe 1).

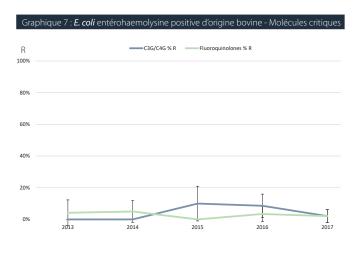
Escherichia coli entérohaemolysine positive bovin

Si nous nous penchons à présent sur certaines populations colibacillaires d'intérêt, force est de constater que les tendances ne sont pas toutes identiques.


La plupart des souches sont lésionnelles car les bactéries s'attachent aux villosités intestinales pour les «effacer» (AECC) et certaines sécrètent des vérotoxines (VTEC) responsables de diarrhées hémorragiques (EHEC). L'extension de la période de réceptivité s'étend bien au-delà de la période néonatale dans ce cas. Chez les bovins, ces souches présentent des propriétés supplémentaires non liées à la pathogénie de l'infection mais très utiles au diagnostic de routine, à savoir la production d'entérohaemolysine (sur gélose au sang de mouton avec globules rouges lavés).

Il s'agit d'une population colibacillaire peu présente dans nos bases de données et pour lesquelles les niveaux de résistance sont faibles.

Tableau 7 : <i>E. coli</i> entérohaemolysine positive d'origine bovine					
Année	2013	2014	2015	2016	06/2017
n	30	44	31	55	46

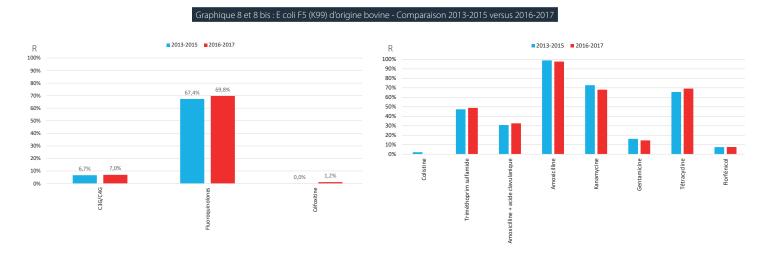

COMPARAISON 2013-2015 VERSUS 2016-2017

Les effectifs de cette population bactérienne étant moindres, le test de l'écart réduit ne peut être utilisé. Nous avons donc réalisé un khi carré. Il n'y a aucune différence significative pour ces deux périodes.

COMPARAISON 2013-2015 VERSUS 2016-2017

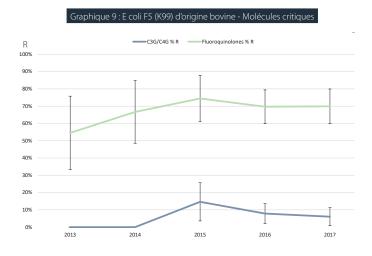
Ces souches ont des niveaux de résistance aux antibiotiques très bas au regard des autres *E. coli* pathogènes chez le bovin. Au cours des 5 ans, ils ne subissent aucune variation notable. Les éléments remarquables quant à ces bactéries ne se situent pas dans l'évolution de leur antibiorésistance, mais dans l'évolution des sérotypes circulant dans les populations bovines wallonnes comme le décrit J. Mainil (voir annexe 2).

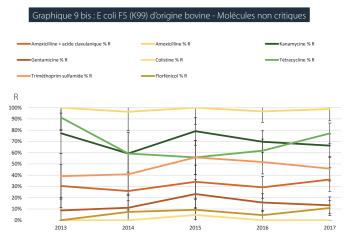
Escherichia coli entérotoxinogènes (ETEC)


Les E coli F5 autrefois appelés *E. coli* K99 sont des souches exclusivement liées aux jeunes veaux de moins de 5 jours. Elles sont productrices de toxines et induisent l'accumulation de liquides dans l'intestin et ce faisant, généralement une déshydratation très marquée.

Cette population représente moins de 10% des *E. coli* isolés en production bovine.

Tableau 8 :	E. coli F5 (K99) d'origine bo	vine		
Année	2013	2014	2015	2016	06/2017
n	24	26	39	85	78

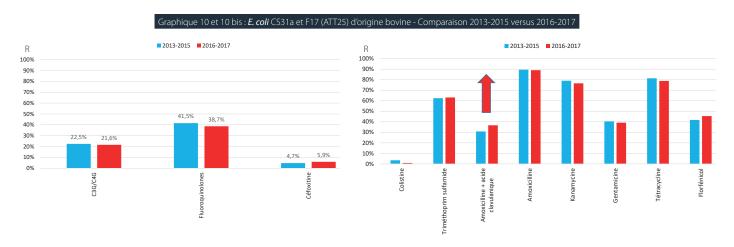

COMPARAISON 2013-2015 VERSUS 2016-2017


Les effectifs étant faibles pour cette population, le test de l'écart réduit ne peut être utilisé. Nous avons donc réalisé un khi carré. Il n'y a aucune différence significative pour ces 2 périodes. Toutefois, il faut signaler qu'il s'agit de la seule population colibacillaire où la tendance est à l'accroissement de la résistance entre ces 2 périodes, pour les molécules critiques.

COMPARAISON 2013-2015 VERSUS 2016-2017

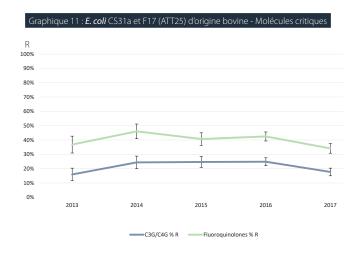
On notera un niveau de résistance d'environ 70% vis-à-vis des fluoroquinolones nettement plus élevé que pour les autres sérotypes. Ce niveau semble toutefois stabilisé depuis 2015. La résistance aux C3G/C4G est d'environ 6%. Ce chiffre est nettement inférieur à ce qui est mesuré dans les autres populations d'*E. coli* digestifs. Pour ce qui est des molécules non critiques, la résistance à la gentamicine et au triméthoprime - sulfamides est en diminution depuis 2 ans.

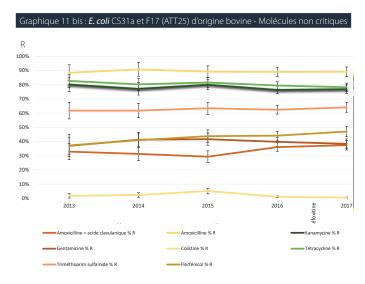
Les souches invasives


Les *E. coli* F17 (anciennement appelés *E. coli* ATT 25) et les *E. coli* CS31a

Ces bactéries sont isolées dans le tube digestif, mais aussi dans les autres organes internes. Pour les *E. coli* isolés sur organes internes, nous ne réalisons les antibiogrammes que si la culture est pure ou très largement majoritaire et abondante. Ce segment ne reprend que les *E. coli* CS31A et F17 clairement classés en digestifs ou septicémiques sur base de l'anamnèse ou de l'autopsie.

Tableau 9 : <i>E. coli</i> CS31a et F17 (ATT25) d'origine bovine					
Année	2013	2014	2015	2016	06/2017
n	276	378	499	987	809


COMPARAISON 2013-2015 VERSUS 2016-2017

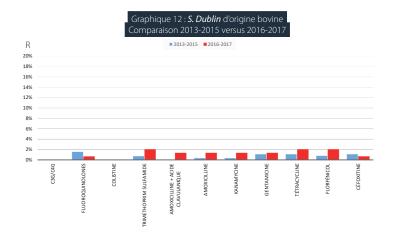

Nous ne constatons pas encore de différence significative allant dans le sens d'une diminution de l'antibiorésistance pour les C3G /C4G et pour les fluoroquinolones. Par contre, la résistance vis-à-vis de l'amoxicilline + acide clavulanique est significativement à la hausse.

COMPARAISON 2013-2015 VERSUS 2016-2017

C'est une population 10 fois plus importante que les *E. coli* F5, qui voit décroître depuis 2016 les niveaux de résistance aux molécules critiques, alors que la résistance aux molécules non critiques est très stable au cours de cette période avec toutefois une très légère augmentation depuis fin 2016. Il faut très probablement y voir le reflet des modifications des thérapeutiques antibiotiques chez les bovins.

Les autres entérobactéries d'intérêt

Salmonella enterica Dublin

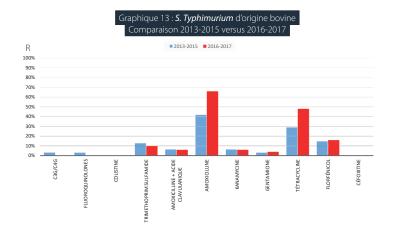

C'est la salmonelle la plus prévalente dans nos exploitations wallonnes (tableau 3). On l'isole essentiellement sur des fœtus ou des veaux septicémiques âgés de moins de 6 mois. Contrairement aux *E. coli*, les niveaux d'antibiorésistance de cette entérobactérie sont très faibles et ne subissent aucune évolution sur la période 2013-2017 (graphique 12).

A trois reprises en 2015 et 2016, nous avons identifié un profil résistant à la céfoxitine et aux fluoroquinolones et ce dans trois communes

adjacentes, ce qui suggère une dissémination locale d'un clone multirésistant aux molécules critiques. Ce dernier serait également résistant ou intermédiaire aux tétracyclines et aux sulfamides potentialisés. Il s'agit d'un événement rare, mais à surveiller pour cette salmonelle réputée peu évolutive en matière d'antibiorésistance.

En matière de salmonellose, les difficultés thérapeutiques vis-à-vis de cette bactérie intracellulaire facultative ne relèvent pas de l'antibiorésistance.

Tableau 10 : S. Dublin d'origine bovine				
Année	n			
2013	55			
2014	89			
2015	99			
2016	102			
06/2017	38			


Salmonella enterica Typhimurium

Sérotype rare dans notre pratique bovine puisque rencontré moins de 10 fois en moyenne sur la période 2013- 2015, il faut toutefois noter le nombre inhabituellement élevé de ses isolements à partir de septembre 2016 et pour le premier semestre 2017. L'antibiorésistance visà-vis des molécules critiques est nulle pour la période 2016-2017 et faible pour les molécules non critiques, à l'exception de la tétracycline, l'amoxicilline et du florfénicol.

La répartition géographique des cas et de l'antibiorésistance de ces souches n'est pas homogène. En 2016 et 2017, on dénombre 10 isolements en province de Namur avec 1 profil R AMX-TE pour 8 d'entre eux, 18 isolements en province de Liège avec 6 profils R AMX et 5 profils R AMX-FF-TE tous situés dans le nord-est de la province. Dans le Hainaut, nous avons isolé 8 souches dont 3 de profil AMX-TE, pour seulement 2 en province de Luxembourg.

Notons enfin l'isolement de 2 souches de *S. Typhimurium* de phénotype BLSE en 2015 et aucune en 2016-2017.

Tableau 11 : S. Typhimurium d'origine bovine				
Année		% de bactériologies positives		
2013	10	0,48%		
2014	13	0,44%		
2015	07	0,32%		
2016	34	0,98%		
06/2017	16	0,65%		

Les bactéries pathogènes respiratoires majeures

Les *pasteurellaceae* sont les bactéries majeures en pathologie respiratoire chez les bovins.

Pour cette famille, seules les données couvrant la période 2016-2017 sont présentées. Deux raisons expliquent ce choix. Tout d'abord, il s'agit

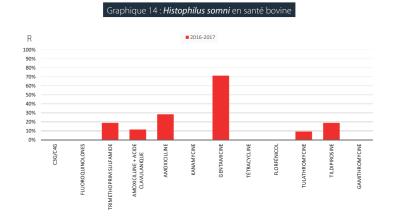
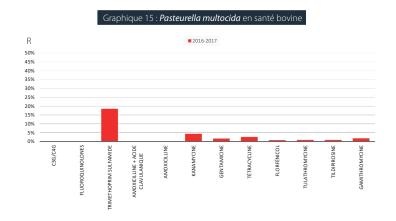

d'une famille de bactéries qui ne subit aucune évolution en matière d'antibiorésistance. Ensuite, nous ne disposons de données complètes sur les nouveaux macrolides (tildipirosine, gamithromycine et tulathromycine) que pour cette seule période.

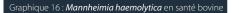
	Tableau 12 : <i>Pasteurellaceae</i> , les antibiogrammes les plus fréquents				
	2013	2014	2015	2016	06/2017
Pasteurella multocida	30	31	33	65	48
Mannheima haemolytica	13	22	25	49	39
Histophilus somni	7	10	6	13	11
Bibersteinia trehalosi	1	1	1	7	6
Mannheimia varigena	0	0	2	6	6
Gallibacterium anatis				4	2

Pour *Histophilus somni*, bactérie responsable de pneumonies, mais aussi d'encéphalites, de myocardites, de septicémies ou d'arthrites, peu de données d'antibiorésistance existent. La fragilité de cette bactérie et la difficulté à la faire croître sur des milieux de culture en sont les prin-

cipales raisons. Les niveaux de résistance sont faibles sauf pour la gentamicine, mais qui n'est assurément pas une molécule habituellement utilisée pour ce type de pathologie.


ab	ableau 13 : <i>Histophilus somni</i> d'origine bovir		
	Année	n	
	2013	7	
	2014	10	
	2015	6	
	2016	13	
	06/2017	11	

Pour *Pasteurella multocida* et *Mannheimia haemolytica*, les niveaux de résistance sont très bas. Sur base d'un antibiogramme, le recours aux molécules critiques n'est jamais indiqué.

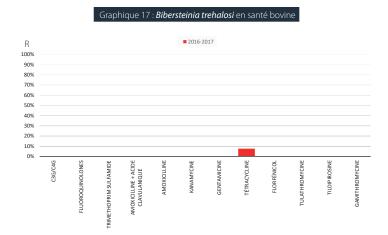

Tableau 14 : Pasteurella multocida d'origine bovine

Année	n
2013	30
2014	31
2015	33
2016	65
06/2017	48

Tableau 15 : *Mannheimia haemolytica* d'origine bovine

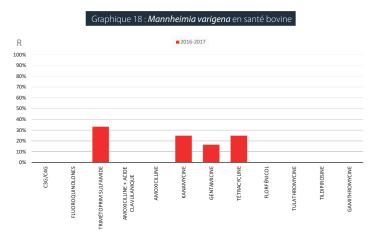
Année	n
2013	13
2014	22
2015	25
2016	49
06/2017	39

Les bactéries pathogènes respiratoires mineures


Parmi les *pasteurellaceae* occasionnellement isolées en santé bovine, signalons *Bibersteinia trehalosi* (tableau 16), autrefois appelée *Pasteurella trehalosi* et qui correspond à l'ancien biotype T de *Pasteurella haemolytica*, le biotype A ayant quant à lui été renommé *Mannheimia haemolytica*. Cette pasteurelle est bien connue en pathologie des petits ruminants chez qui elle est responsable de septicémies et de

pneumonies. Chez le bovin, son rôle est incertain, mais elle pourrait se comporter comme une bactérie opportuniste dans les pneumonies à *Mannheimia haemolytica*.

L'antibiorésistance associée est faible (graphique 17 et 18). Il semble que le même constat soit à faire sur les souches isolées chez les moutons.


Tableau 16 : *Bibersteinia trehalosi* d'origine bovine

n
1
1
1
7
6

Mannheimia varigena, espèce bactérienne rencontrée occasionnellement en santé bovine, est notamment responsable de pneumonies et septicémies.

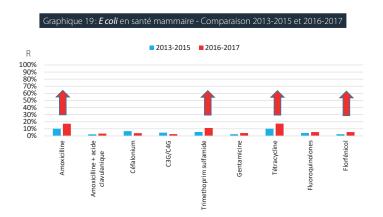
Tableau 17 : <i>Mannheimia varigena</i> d'origine bov			ovi
	Année	n	
	2013	0	
	2014	0	
	2015	2	
	2016	6	
	06/2017	6	

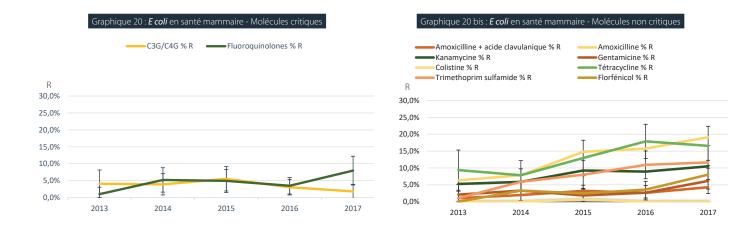
L'identification de ces bactéries est désormais possible grâce à la spectrométrie de masse (MALDI-TOF); historiquement, leur identification par galeries biochimiques était très aléatoire comme en témoignent les chiffres antérieurs à 2014 (tableau 17).

La santé mammaire

	Tableau 18 : Mammites bovines - Antibiogrammes les plus fréquents				
	2013	2014	2015	2016	06/2017
Streptococcus uberis	150	191	152	254	218
Escherichia coli	104	163	167	231	170
Staphylococcus aureus	32	70	54	111	74
Streptococcus dysgalactiae	56	53	56	73	77
Staphylococcus haemolyticus	10	22	11	32	23
Staphylococcus chromogenes		10	11	25	14
Serratia marcescens	3	7	13	17	6
Staphylococcus sciuri	3	6	4	9	11
Staphylococcus xylosus	1	8	7	9	7
Enterococcus faecium		2	1	7	5
Staphylococcus warneri		3	1	7	3
Streptococcus parauberis			2	7	9
Klebsiella pneumoniae	1			6	1
Lactococcus garvieae			1	6	1
Bacillus licheniformis				5	
Pantoea agglomerans		2		5	2
Serratia liquefaciens	7	10	5	4	6
Staphylococcus hyicus		1	1	4	2
Streptococcus agalactiae	2	5	4	3	1

	Tableau 19 : Les pathogènes majeurs en santé mammaire				
	2013	2014	2015	2016	06/2017
Streptococcus uberis	150	191	152	254	218
Escherichia coli	104	163	167	231	170
Staphylococcus aureus	32	70	54	111	74
Streptococcus dysgalactiae	56	53	56	73	77
Streptococcus agalactiae	2	5	4	3	1


Les entérobactéries


Les *Escherichia coli* isolés en santé mammaire ont des niveaux de résistance très nettement inférieurs aux niveaux constatés pour les autres populations colibacillaires rencontrées en pathologie bovine. Ce constat est assez logique dès lors que ces *E. coli* sont des bactéries dites d'environnement.

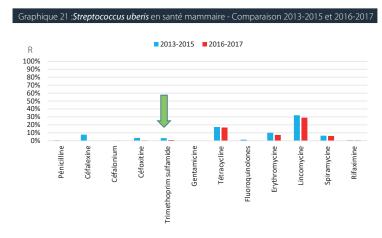
Nous constatons toutefois qu'il s'agit des populations colibacillaires qui subissent le plus de variations à la hausse de leur antibiorésistance y compris pour les fluoroquinolones, entre 2016 et 2017. Pour les périodes 2013-2015 et 2016-2017, les variations significatives à la hausse concernent l'amoxicilline, le triméthoprime - sulfamides, la tétracycline et le florfénicol. Aucune variation significative favorable n'est constatée.

Tableau 20 : <i>E coli</i> en santé mammaire		
Année	n	
2013	97	
2014	153	
2015	162	
2016	229	
06/2017	163	

COMPARAISON 2013-2015 VERSUS 2016-2017

Les streptocoques

Dans le référentiel de la CA-SFM, la sensibilité des streptocoques à la pénicilline est évaluée à partir du diamètre d'inhibition mesuré autour de la pastille d'oxacilline.

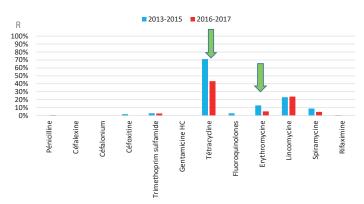

Streptococus uberis est la bactérie la plus souvent isolée en santé mammaire (tableau 21). En termes d'antibiorésistance, elle ne subit que très peu de variations, raison pour laquelle seule la comparaison 2013-2015 versus 2016-2017 est envisagée.

Aucune souche résistante à la pénicilline n'a été mise en évidence depuis 2013 (graphique 21). La résistance à la lincomycine, associée ou non à la résistance à l'érythromycine, est la plus prévalente.

La diminution de la résistance vis-à-vis du triméthoprime - sulfamides est la seule différence significative.

Tableau 21 : Streptococcus uberis en santé mammaire

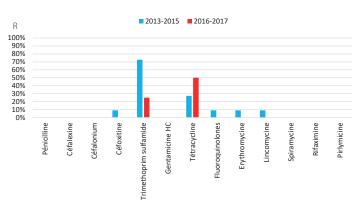

Année	n
2013	150
2014	195
2015	156
2016	260
06/2017	227



Pour Streptococcus dysgalactiae, les niveaux de résistance à la tétracycline et à l'érythromycine diminuent significativement.

Tableau 22 : *Streptococcus dysgalactiae* en santé mammaire

Année	n
2013	58
2014	56
2015	58
2016	73
06/2017	77



Streptococcus agalactiae est une bactérie rarement isolée en santé mammaire en Wallonie, il nous est donc impossible d'y apporter des commentaires en matière d'antibiorésistance. Le graphique est donc présent à titre purement informatif.

Tableau 23 : **Streptococcus agalactiae** en santé mammaire

Année	n
2013	2
2014	5
2015	4
2016	3
06/2017	1

Graphique 23 : Streptococcus agalactiae en santé mammaire - Comparaison 2013-2015 et 2016-2017


Les staphylocoques

	Tableau 24 : Mammites bovines: répartition des staphylocoques				
	2013	2014	2015	2016	06/2017
Staphylococcus aureus	32	70	54	111	74
Staphylococcus haemolyticus	10	22	11	32	23
Staphylococcus chromogenes		10	11	25	14
Staphylococcus sciuri	3	6	4	9	11
Staphylococcus xylosus	1	8	7	9	7
Staphylococcus warneri		3	1	7	3
Staphylococcus hyicus		1	1	4	2
Staphylococcus simulans				4	1
Staphylococcus saprophyticus				1	
Staphylococcus sp.				1	1
Staphylococcus coa négative	16				
Staphylococcus epidermidis		1			
Staphylococcus hominis					1
Staphylococcus vitulinis					1

Le dernier germe pathogène majeur en santé mammaire est bien évidemment **Staphylococcus aureus**. Comme le montre le graphique 24, les niveaux d'antibiorésistance sont très faibles. La diminution de la résistance vis-à-vis de la pénicilline décroît à nouveau de manière significative.

|--|

Année	n
2013	32
2014	70
2015	54
2016	111
06/2017	74

Les *staphylocoques coagulase* négative, bien que ne faisant pas partie des pathogènes majeurs en santé mammaire, forment tout de même une famille d'intérêt. Toutefois, leurs profils d'antibiorésistance ne sont pas tout à fait homogènes.

Les tableaux et graphiques suivants donnent une idée du niveau d'antibiorésistance des espèces les plus prévalentes dans nos échantillons. Il est à noter que l'antibiorésistance vis-à-vis de la pénicilline est généralement plus haute que pour Staphylococcus aureus.

Tableau 26 : Staphylococcus haemolyticus en santé mammaire

Année	n
2013	10
2014	22
2015	11
2016	32
06/2017	23

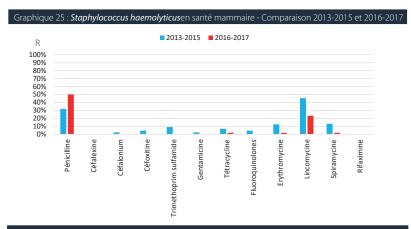


Tableau 27 : **Staphylococcus chromogenes** en santé mammaire

Année	
2013	0
2014	10
2015	11
2016	25
06/2017	14

Graphique 26 : Staphylococcus chromogenes en santé mammaire - Comparaison 2013-2015 et 2016-2017

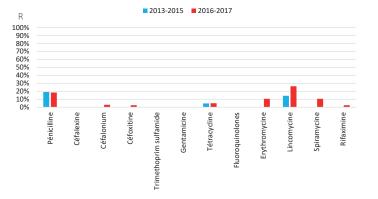


Tableau 28 : **Staphylococcus xylosus** en santé mammaire

Année	
2013	1
2014	8
2015	7
2016	9
06/2017	7

Graphique 27 : Staphylococcus xylosus en santé mammaire - Comparaison 2013-2015 et 2016-2017

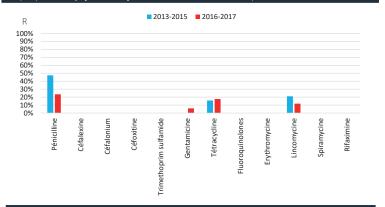
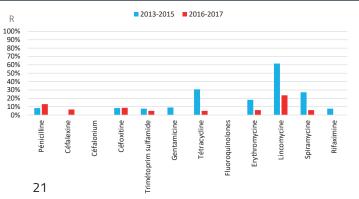



Tableau 29 : **Staphylococcus sciuri** en santé mammaire

Année	n
2013	3
2014	6
2015	4
2016	9
06/2017	11

Graphique 28 : **Staphylococcus sciuri** en santé mammaire - Comparaison 2013-2015 et 2016-2017

Biais de sélection dans les bactéries étudiées

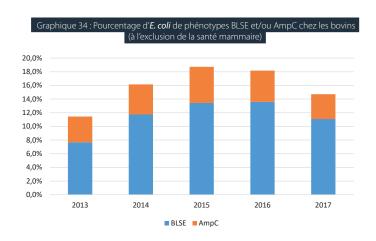
Une part non négligeable des bactéries isolées dans notre laboratoire sont issues de la salle d'autopsie et donc d'animaux ayant très probablement été exposés à un ou plusieurs traitements antibiotiques mais qui sont, en général, des échecs thérapeutiques.

Il en résulte donc un biais de sélection des bactéries étudiées. Nous en sommes pleinement conscients. Toutefois, ce biais se répète d'année en année et n'empêche donc pas de comparer les résultats obtenus au cours d'années successives. Ce suivi présente l'avantage d'être extrêmement économique puisqu'il exploite des données gratuitement disponibles à l'issue des activités de diagnostic au contraire des études environnementales. Il est également réalisé dans d'autres pays européens dont la France, via le réseau RESAPATH.

A titre d'exemple, nous avons tenté d'illustrer les différences de niveaux

de résistance observés entre les *E. coli* digestifs issus de la salle d'autopsie et les *E. coli* issus de prélèvements de matières fécales bovines, sur le terrain. Nous formulons l'hypothèse que les prélèvements réalisés en ferme sur des veaux le sont, dans la majorité des cas, avant la mise en place d'un traitement antibiotique.

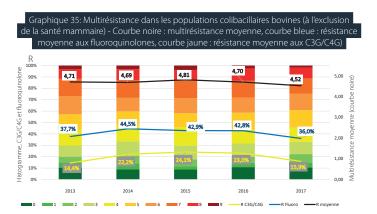
Envers les molécules critiques, la décroissance de la résistance est plus rapide pour les souches issues de la salle d'autopsie (graphiques 29 et 30) ce qui nous semble être un signe clair de modification des pratiques sur le terrain.

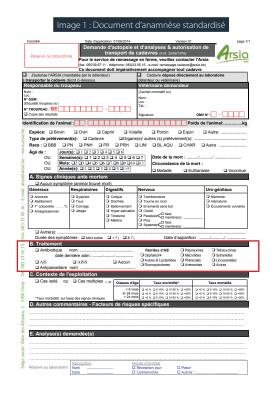

Pour ce qui est des molécules non critiques, la résistance repart à la hausse en 2017 (graphiques 31, 32 et 33), avec des tendances plus marquées pour les bactéries issues de l'autopsie.

Les entérobactéries multirésistantes

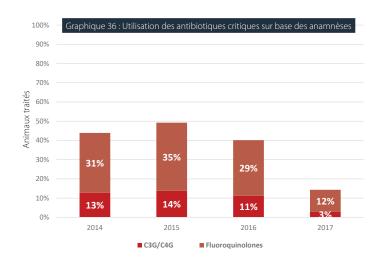
Les BLSE et les AmpC

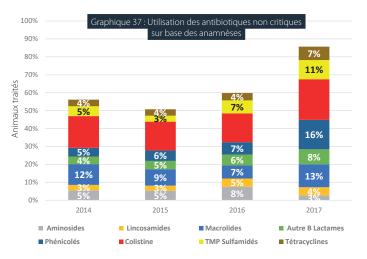
La sélection des *E. coli* de phénotypes BLSE et AmpC a été concomitante avec l'utilisation des céphalosporines de 3^{ème} et 4^{ème} générations. Dans nos échantillons, leurs prévalences n'ont cessé d'augmenter jusqu'en 2015 ; depuis lors, elles décroissent (graphique 34). Ces constatations sont à mettre en parallèle de la décroissance de la résistance aux C3G/C4G dans les populations colibacillaires.

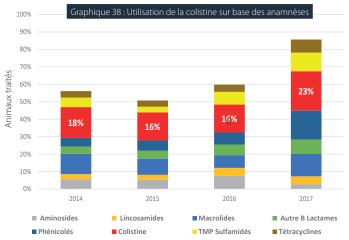



La multirésistance chez les E. coli bovins

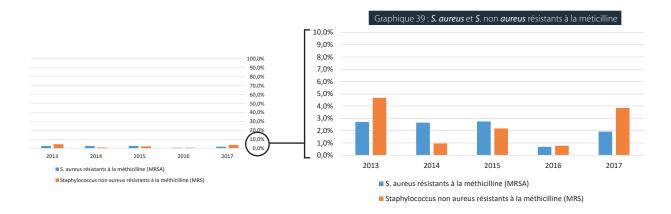
En 2017, sur nos antibiogrammes, 10,5% des *E. coli* isolés en pathologie bovine à l'exclusion de la santé mammaire ne présentaient aucune résistance, 11,8% présentaient une résistance à 2 antibiotiques maximum, 77,8% étaient résistants à au moins 3 molécules antibiotiques (graphique 35) pour un niveau de multirésistance moyen de 4,52 (courbe rouge). La décroissance de l'antibiorésistance générale est donc moins marquée que la diminution de résistance visà-vis des fluoroquinolones (courbe bleue) et vis-à-vis des C3G/C4G (courbe jaune).


Cela semble donc indiquer que la résistance moyenne aux antibiotiques non critiques stagne ou augmente dans cette population bactérienne alors que la résistance à l'encontre des molécules critiques décroît.


En marge de ces résultats, les données du document d'anamnèse standardisé accompagnant les cadavres soumis à l'autopsie ont été examinées. A travers celles-ci, il est possible d'évaluer l'évolution des pratiques dans l'utilisation des antibiotiques en production bovine. Un traitement antibiotique est renseigné dans environ 50% des dossiers accompagnés de ce document (image 1).



Il ressort de ces données que le nombre relatif de dossiers dans lesquels l'utilisation de molécules critiques est signalée a été divisé par plus de 4 pour les céphalosporines de 3ème et 4ème générations entre 2015 et 2017 et par 3 pour les fluoroquinolones (graphique 36). La tendance est par contre inverse pour les molécules non critiques (graphique 37), avec un point d'attention à prêter à la colistine, laquelle est utilisée de plus en plus fréquemment alors que son statut en matière de criticité a été réévalué cette année par l'OMS (graphique 38).



Les MRSA et MRS

Les staphylocoques aureus résistants à la méticilline, soit «MRS», représentent un faible pourcentage des souches de staphylocoques en santé mammaire. Il semble toutefois utile de rappeler que la mise en évidence de telles bactéries chez un bovin laitier doit amener à sa réforme.

Ce qu'il faut retenir

Le précédent rapport d'activités décrivait une dégradation significative de la résistance bactérienne vis-à-vis des molécules critiques et spécialement des céphalosporines de 3^{ème} et 4^{ème} générations dans les populations colibacillaires en santé bovine.

Le rapport 2017 est clairement caractérisé par la planéité des courbes concernant ces mêmes molécules. A partir de 2016-2017, une inflexion à la baisse semble s'installer. Il faut parler ici d'une tendance puisqu'aucune différence statistiquement significative n'est mise en évidence.

Pour les molécules non critiques, les tendances sont identiques à la différence près qu'à partir de 2016, 2017 une inflexion à la hausse semble cette fois s'installer notamment pour l'amoxicilline + acide clavulanique et le triméthoprime - sulfamides, mais aussi pour la tétracycline et le florfénicol, molécules a priori peu utilisées pour le traitement des colibacilloses.

Gageons qu'il s'agit des premiers effets de la réforme de la politique en matière d'utilisation des antibiotiques en médecine vétérinaire bien qu'il faille rester prudent quant à la signification à leur donner.

En termes d'échantillonnage, l'incitation à un recours plus fréquent au laboratoire a probablement pour effet d'y envoyer plus souvent des échantillons et donc des bactéries n'ayant pas été soumises à une exposition préalable à un ou plusieurs antibiotiques et donc à une pression de sélection initiale.

En termes de signification statistique, il s'agit ici de tendances, les différences significatives étant rares ou inexistantes. Il faudra donc confirmer ces données dans le futur.

Conclusion

Rappelons l'objectif d'une diminution de 75% de l'usage des molécules critiques et de 50% de l'ensemble des molécules antibiotiques à l'horizon 2020, le point de départ étant 2015.

En termes de cible à atteindre, nous parlons donc bien d'une diminution générale de l'antibiorésistance et non de sa décroissance envers les seules molécules critiques. Cela signifie donc que c'est la consommation d'antibiotiques dans son ensemble qui doit diminuer...

Les nouvelles contraintes législatives incitent à un recours plus fréquent aux diagnostics de laboratoire afin d'étayer l'usage des antibiotiques, mais il faut surtout y voir une véritable opportunité d'améliorer la précocité des diagnostics étiologiques et donc la mise en place de mesures prophylactiques et zootechniques adaptées et pertinentes qui sont, selon nous, les véritables portes de sortie de la problématique de l'antibiorésistance dans les productions animales.

Remerciements

Nous ne saurions conclure ce rapport sans remercier les vétérinaires praticiens et les éleveurs qui, année après année, nous témoignent leur confiance en nous transmettant leurs échantillons.

Soit enfin également remercié le personnel du laboratoire de l'ARSIA dont ce document n'est que la modeste synthèse de leur travail rigoureux et quotidien.

Annexe 1

Gènes mcr-1- et mcr-2 dans des souches bovines d'Escherichia coli isolées à l'ARSIA

Pr. Jacques Mainil, ULg, FMV

INTRODUCTION

En 2015, le gène plasmidique mcr-1 conférant une résistance à la colistine a été identifié dans une souche porcine d'*Escherichia coli* en Chine (Liu YY et al. Lancet Infect Dis, 2016, 16(2), 161-168). Dans les mois qui suivent, ce gène a été identifié par PCR dans des souches aviaires, bovines, humaines et porcines d'*E. coli* sur divers continents.

Le but de ce travail était d'identifier en Belgique des souches d'*E. coli* bovines résistantes à la colistine et porteuses du gène mcr-1 par des tests phénotypiques et génétiques.

PREMIERE PARTIE: SOUCHES D'AVANT 2011

Dans une première étape, 700 souches d'*E. coli* bovines isolées en 2009 et 2010 ont été inoculées sur des géloses contenant 1 mg/ml de colistine: 88 ont montré une croissance. Ces 88 souches ont ensuite été testées par hybridation ADN-ADN sur colonies: cinq d'entre elles hybridaient totalement avec la sonde dérivée du gène mcr-1, tandis qu'une souche bovine hybridait partiellement. Ces six souches avaient une concentration minimale inhibitrice (CMI) de 3 à 16 mg/ml de colistine (E-test®). Les 5 souches hybridant totalement avec la sonde mcr-1 étaient également positives à la PCR pour le gène mcr-1, tandis que la sixième souche, hybridant partiellement était négative.

Entretemps, un gène mcr-2 avait été identifié et publié (Xavier BB et al., Eurosurveillance, 21, 7 July 2016). Les six mêmes souches bovines ont été soumises à la PCR pour ce gène mcr-2 et toutes donnaient des

résultats négatifs. Une souche positive à la sonde et à la PCR mcr-1 a été séquencée (ISP-WIV) et la présence du gène mcr-1 a été confirmée. Par contre, aucun gène mcr-like n'a été identifié dans la souche qui donnait un résultat partiel à l'hybridation avec la sonde mcr-1.

En conclusion le gène mcr-1 était déjà présent chez les bovins en 2009 et 2010, bien qu'à faible fréquence (<1%), mais le gène mcr-2 n'a pas été détecté dans cette « ancienne » collection.

DEUXIEME PARTIE: SOUCHES DE 2014 et 2015

Dans une seconde étape, 36 souches bovines d'*Escherichia coli* isolées en 2014 et 2015 de matières fécales ou de contenus intestinaux, positives pour les antigènes F5, F17 ou CS31A après culture sur milieu Minca et résistantes à la colistine selon les résultats du test de diffusion en gélose, ont été soumises aux PCR pour les gènes mcr-1 et mcr-2.

Une souche de 2014 et huit souches de 2015 (sept souches ATT25+ et deux souches CS31A+) étaient positives à la PCR pour le gène mcr-1 tandis que 2 souches de 2014 et deux souches de 2015 (une souche F5+ et trois souches CS31A+) étaient positives à la PCR pour le gène mcr-2.

En conclusion, non seulement le gène mcr-1 est bien toujours présent, mais le gène mcr-2 a aussi été détecté dans cette «nouvelle» collection de souches bovines isolées en 2014 et 2015. Les fréquences de ces deux gènes ne sont pas cependant calculables étant donné que ce second échantillon de souches n'était pas pris au hasard.

Annexe 2

Identification des souches Shigatoxinogènes et entéropathogènes parmi les *Escherichia coli* isolées de matières fécales ou de contenu intestinal de veaux et productrices d'entérohémolysine(s)

Pr. Jacques Mainil, ULG, FMV

A côté des souches entérotoxinogènes d'*Escherichia coli* (ETEC: par exemple F5+) qui sont responsables des diarrhées chez les veaux nouveau-nés, d'autres souches pathogènes d'*Escherichia coli* sont associées à des diarrhées chez les jeunes veaux jusque 2 à 3 mois: les souches nécrotoxinogènes ou NTEC, les souches Shigatoxinogènes ou STEC, et les souches entéropathogènes ou EPEC (par exemple: Mainil J. Le point des connaissances sur les entérites à *Escherichia coli* des veaux. Ann Méd Vét 144: 121-136, 2000).

Le problème avec ces pathotypes NTEC, STEC et EPEC est la difficulté de les identifier en routine dans l'ensemble de la flore colibacillaire de l'intestin des jeunes veaux. A ce jour, seule la recherche d'hémolysine sur milieu gélosé au sang permet un premier tri des colonies sans passer par des méthodes génétiques (PCR par exemple). Les colibacilles produisent trois genres d'hémolysines: l'alpha, la plus connue, et la beta sont détectées sur des milieux gélosés au sang classiques ; les entérohémolysines ne peuvent être détectées que par un repiquage sur une gélose particulière, au sang lavé, de colonies isolées après coproculture. Les premières sont typiques d'une sous-classe de souches NTEC ; les secondes sont produites par une certaine proportion de souches STEC et EPEC.

A l'ARSIA, la production d'une entérohémolysine est systématiquement recherchée lors de coproculture ou de culture à partir de contenu intestinal. Cependant, toutes les souches positives ne sont pas nécessai-

rement des souches STEC ou EPEC. Une collaboration s'est instaurée avec le laboratoire de Bactériologie de la Faculté de Médecine vétérinaire de l'Université de Liège, pour tester les souches entérohémolysine-positives par des PCR pour des gènes typiques des souches STEC et EPEC.

Une collection de 304 souches productrices d'entérohémolysine et isolées entre novembre 2008 et juin 2015 a ainsi été soumise à des tests PCR pour détecter trois gènes typiques des souches STEC et EPEC (stx1, stx2 et eae): 267 souches (88%) étaient positives à au moins une de ces trois PCR. Cela signifie que quasi 9 colonies sur 10 qui produisent une entérohémolysine peuvent être considérées comme potentiellement pathogènes chez le jeune veau. Cette affirmation doit cependant être légèrement nuancée, car toutes ces souches n'ont pas le même potentiel pathogène pour les jeunes veaux (Tableau 1): le pouvoir pathogène des 153 souches AE-STEC (50%: eae_stx1, eae_stx1_stx2, eae_stx2) dépend aussi de leurs sérogroupes (voir ci-dessous); les 104 souches EPEC (34%: eae) peuvent par contre être considérées comme très probablement pathogènes; quant au potentiel pathogène des 10 souches STEC (3%: stx1, stx1_stx2, stx2), il est inconnu actuellement, mais ces souches ne représentent qu'une faible minorité.

Des travaux antérieurs des années 1990 dans différents pays dont la Belgique avaient identifié les sérogroupes O5, O26, O111 et O118 comme les plus fréquents parmi les souches AE-STEC et le sérogroupe

O26 parmi les souches EPEC isolées des jeunes veaux. Des tests PCR supplémentaires ont donc été effectués pour identifier ces quatre sérogroupes à pouvoir pathogène prouvé chez le jeune veau, ainsi que cinq sérogroupes supplémentaires: O103, O121, O145 et O157, et O165, qui sont importants en santé publique humaine. Les sérogroupes les plus fréquemment identifiés sont: O26, O111, O5 et O103 (Tableau 2). Ce dernier n'était pas détecté auparavant chez les jeunes veaux et son potentiel pathogène devrait être étudié. Inversement, le sérogroupe O118 n'a plus été détecté. Les autres sérogroupes sont minoritaires (O121, O145, O157) ou absents (O165). Au total, un sérogroupe n'a cependant été identifié que dans seulement 154 sur les 267 souches AE-STC, EPEC et STEC. Mais, ce chiffre doit être ré-analysé en fonction du pathotype (Tableau 3).

Si l'on fait abstraction des 10 souches STEC, il est remarquable en effet de constater que 129 des 153 souches AE-STEC (84%) appartiennent à un des sept sérogroupes identifiés et que 111 d'entre elles (73%) appartiennent à un sérogroupe à pouvoir pathogène prouvé (O5, O26, O111) chez le jeune veau (Tableau 3). En contraste, seulement 22 des

104 souches EPEC (21%) appartiennent à l'un des sept sérogroupes identifiés et 18 d'entre elles (17%) appartiennent au sérogroupe O26. Les autres sérogroupes auxquels les souches EPEC appartiennent sont en cours d'identification en collaboration avec un laboratoire de l'Université de Miyazaki au Japon.

Une partie de ces résultats a été publiée dans <Fakih I., Thiry D., Duprez J.-N., Saulmont M., Iguchi A., Piérard D., Jouant L., Daube G., Ogura Y., Hayashi T., Taminiau B., Mainil J.G. Identification of Shiga toxin-producing (STEC) and enteropathogenic (EPEC) *Escherichia coli* in diarrhoeic calves and comparative genomics of O5 bovine and human STEC. Veterinary Microbiology, sous presse, 2017. doi: 10.1016/j.vet-mic.2016.02.017> et une autre partie a été présentée pendant le 7^{eme} Colloque International francophone de Microbiologie vétérinaire (CIF-MA2017) qui s'est tenu à Liège en mars 2017 < Thiry D., Takaki S., Duprez J.N., Saulmont M., Iguchi A., Mainil J. Sérogroupes non conventionnels de souches Shigatoxinogènes et entéropathogènes d'*Escherichia coli* (STEC et EPEC) isolées de veaux diarrhéiques>.

CE QU'IL FAUT RETENIR

- 1. 85% des souches productrices d'entérohémolysine sont des souches AE-STEC ou EPEC à potentiel pathogène pour le jeune veau ;
- 2. près de trois souches AE-STEC sur quatre appartiennent à des sérogroupes à pouvoir pathogène reconnu et prouvé chez le jeune veau, dont certains ont un pouvoir pathogène également reconnu chez l'homme (O26 et O111 par exemple);
- 3. si l'ensemble des souches EPEC peuvent être considérées comme pathogène chez le jeune veau, les sérogroupes de près de 80% d'entre elles n'ont pas été identifiés dans nos études et font l'objet de travaux complémentaires, afin de les comparer aux souches EPEC humaines.

Tableau 1. Résultats des tests PCR pour les gènes stx1, stx2 et eae et pathotypes identifiés

Virolotype	Nombre	Pathotype
eae stx1	126	
eae stx2	7	AE-STEC (50%)
eae stx1 stx2	20	
eae	104	EPEC (34%)
stx1	2	
stx2	4	STEC (3%)
stx1 stx2	4	
TOTAL	267 (88%)	
Aucun gène	37 (12%)	

Tableau 2. Résultats des tests PCR sur les 267 souches AE-STEC, EPEC et STEC pour les neuf sérogroupes recherchés (05, 026, 0103, 0111, 0118, 0121, 0145, 0157, 0165).

Sérogroupes	Nombre (%)	
O5	15 (6%)	
O26	74 (28%)	
O103	11 (4%)	
0111	43 (16%)	
O118	0	
0121	2 (<1%)	
O145	5 (2%)	
O157	4 (1,5%)	
O165	0	
TOTAL	154/267 (58%)	

Tableau 3. Répartition des neuf sérogroupes (O5, O26, O103, O111, O118, O121, O145, O157, O165) selon le pathotype (AE-STEC, EPEC ou STEC).

Cára graupas	Pathotypes			
Sérogroupes	AE-STEC	EPEC	STEC	
5	15	0	0	
26	55	18	1	
103	10	1	0	
111	41	0	2	
118	0	0	0	
121	0	2	0	
145	4	1	0	
157	4	0	0	
165	0	0	0	
TOTAL (%)	129/153 (84%)	22/104 (21%)	3/10 (30%)	

Bibliographie

- Bughin Jean, Antibiogrammes, Rapport d'activités et résultats de l'ARSIA, 2007
- Bughin Jean, Antibiogrammes, Rapport d'activités et résultats de l'ARSIA, 2010
- Bughin Jean, Antibiogrammes, Rapport d'activités et résultats de l'ARSIA, 2013
- Agriculture, pêcherie et alimentation, Québec, Rapport de la surveillance passive de l'antibiorésistance, programme québécois d'antibiorésistance vétérinaire, rapport 2015
- Faculté Vetsuisse et Société des Vétérinaires Suisses, Utilisation prudente des antibiotiques: Guide thérapeutique pour les vétérinaires, 2016
- ANSES, Réseau d'épidémiosurveillance de l'antibiorésistance des bactéries pathogènes animales Bilan 2015, RESAPATH, édition 2015
- CA SFM, Antibiogramme vétérinaire du Comité de l'Antibiogramme de la Société Française de Microbiologie, 2017
- Van Bambeke Françoise, Tulken Paul, Syllabus national belge de pharmacologie, Pharmacologie et Pharmacothérapie anti-infectieuse, Unité de Pharmacologie Cellulaire et Moléculaire - UCL, 2007-2008

Abréviations et acronymes

- BELAC: Organisme belge d'accréditation
- AMCRA: Antimicrobial Consumption and Resistance in Animals
- BIGAME: Base Informatique de Gestion des Antibiotiques et des Médicaments en Elevage
- CA-SFM: Comité de l'Antibiogramme de la Société Française de Microbiologie
- **AFNOR:** Association française de normalisation
- AEEC: Attaching and effacing Escherichia coli
- **VTEC:** Verotoxigenic *Escherichia coli*
- **EHEC:** Enterohemorrhagic *Escherichia coli*

- ETEC: Enterotoxigenic Escherichia coli
- MALDI-TOF: Matrix Assisted Laser Desorption Ionisation Time Of Flight
- SIR: Sensible Intermédiaire Résistant
- BLSE: Bêta-lactamase à spectre étendu
- AmpC: céphalosporinase
- MRSA: Staphylococcus aureus résistant à la méthicilline
- MRS: Staphylococcus non aureus résistant à la méthicilline
- **UFC:** unité formant colonies

Ciney (Siège social)

Allée des Artisans 2 5590 Ciney

Tel: 083 23 05 15 / Fax: 065 32 88 55 E-mail: arsia@arsia.be

Rocherath

Krinkelt - Vierschillingweg 13 4761 Rocherath

Tel: 080 64 04 44 / Fax: 080 64 04 41 E-mail: arsia@arsia.be

www.arsia.be

« Désormais la solidarité la plus nécessaire est celle de l'ensemble des habitants de la Terre »

> Albert Jacquard Biologiste, généticien, scientifique (1925 - 2013)