

Long-read shotgun metagenomics as a One Health tool to characterize antimicrobial resistance in food-producing environments

Bram Bloemen^{1,2*}, Mathieu Gand^{1*}, Bert Bogaerts¹, Kathleen Marchal², FARMED consortium³, Kevin Vanneste¹, Nancy Roosens¹, Sigrid C.J. De Keersmaecker¹

¹Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium; ²Ghent university, Department of Plant biotechnology and Bioinformatics; Department of Information Technology, Idlab, Ghent, Belgium; ³One Health Joint European Programme; * Equally contributed

Background

- Food-producing environments: important source of antimicrobial resistance (AMR)
- Current methods detecting AMR: targeted, requiring *a priori* knowledge and/or culturing Shotgun metagenomics: identify all genetic material in sample \rightarrow efficient, rapid and comprehensive diagnostics Before application, we need to develop and validate metagenomic approaches from sampling and DNA extraction to sequencing and bioinformatics analysis

Conventional testing

- A priori knowledge
- Culture dependent

Nanopore sequencing: long sequencing reads in real-time on portable device \rightarrow better detection of microbial genes and scaffold them to their host chromosomes in complex metagenomics samples, improving taxonomic classification and identification of AMR genes.

Methods

- Metagenomic sequencing is faster than many current diagnostic method by bypassing culturing or isolation steps
- As a benchmark: chicken fecal samples spiked with a microbial standard, containing several AMR genes
- Nanopore long-read sequencing (MinION) was compared to short-read sequencing (MiSeq Illumina) DNA extraction and sequencing performed on portable devices, allowing for on-site metagenomics
- Bioinformatics analyses (KMA-based) to identify species and to link them to their AMR genes

Portable DNA extraction and sequencing

Results

Species	Relat. Abund.	Gram	ONT	Illumina													
Escherichia coli	14%	-	+	+					ΔΜΡ σ	ene ident	ification			•	AMR gene	•	R
Faecalibacterium prausnitzii	14%	+	+/-	+/-	Species	Theoretical abundance					incation			Genome	0		
Veillonella rogosae	14%	-	+	+] .	(%)	tet(Q)	mdf(A)	tet(W)	серА	erm(B)	aac(6')-	lsa(A)				n
Roseburia hominis	14%	+/-	+	+	- 							100					i
Bacteroides fragilis	14%	-	+	+	Escherichia coli	14		+									
Prevotella corporis	6%	-	+	+	Eaecalibacterium prauspitzii	1/			⊥ ^B					Short-reads			а
Bifidobacterium adolescentis	6%	+	-	-	- Ractoroidos fragilis	14	, B		т								u I
Fusobacterium nucleatum	6%	-	+	+/-	Bucterolides frugilis	14	Ŧ			т							
Lactobacillus fermentum	6%	+	+	+	Prevotella corporis	6	+ ^B										
Clostridioides/dium difficile	1.50%	+	+	+/-	Clostridioides difficile	1,5					+ ^B		_				
Akkermansia muciniphila	1.50%	-	+	+	Salmonella enterica	0,01						-				•	
Methanobrevibacter smithii	0.10%	+	-	-	Enterococcus faecalis	0,001							n/a	Long-reads		_	t

- oth short-read and long-read netagenomic sequencing dentified the spiked species nd the AMR genes, except for ow abundance species
- lanopore long reads allowed o attribute genes to a host

Salmonella enterica	0.01%	-	-	-	
Enterococcus faecalis	0.001%	+	-	-	
Clostridium perfringens	0.0001%	+	-	-	

+: detected with high KMA mapping scores; +/-: detection with low KMA mapping scores; -: not detected or trace amount

Grey: Expected AMR presence; ^B: also present in fecal background; n/a: not analyzed as species was not detected +: detected with high KMA mapping scores; +/-: detection with low KMA mapping scores; -: not detected or trace amount species by providing additional genomic context

- Proof-of-concept for simultaneous identification of bacterial species and their AMR genes in metagenomics samples using long-read shotgun sequencing delivered, achieving a higher taxonomic resolution and by identifying AMR genes and linking them to their hosts
- Perspective: technology can help to elucidate AMR transmission and exchange along food chain microbiome; explore how to fully transfer this technology to a fast, easy and direct use on-site, opening up opportunities for AMR monitoring and diagnostics in food chain environments and beyond

REFERENCES

De Keersmaecker et al, FARMED deliverable D-JRP12-1.1, https://doi.org/10.5281/zenodo.7429361

ACKNOWLEDGEMENTS

The research that yielded these results was partly funded by the EU's Horizon 2020 Research and Innovation programme under grant agreement No 773830: One Health European Joint Programme.

Sciensano • Bram Bloemen • T + 32 2 642 52 62 • bram.bloemen@sciensano.be • www.sciensano.be